BARTER: Profile Model Exchange for Behavior-based Access Control in MANETs

IBM Security and Privacy Day, Nov ‘06

Vanessa Frías-Martínez
Salvatore J. Stolfo
Columbia University
What is Barter and why do we need it?

- **Idea**
 - We present a new behavior-based access control method for Mobile Ad-hoc Networks (MANETs) based on the profiles of devices.
 - Membership Acceptance and Update -- Devices are accepted/rejected/expelled to/from the MANET depending on their behavior.

- **Motivation**
 - Current approaches try to port “wired” solutions to MANETs.
 - Distributed cryptographic techniques based on keys.
 - Security at a routing level.
 - We propose a comprehensive technique based on profiles for both access control and update membership to enhance, not substitute, previous approaches.
Modeling the behavior

- Behavior = traffic generated and received by a certain application at the host (content modeling)
- Behavior is saved as a BloomFilter (BF) to keep privacy exchanged
- “Good” BloomFilters are obtained by hashing normal, clean traffic to the BF
- “Bad BloomFilters are BF that contain malicious payload of one or more worms hashed into them
Training the system

- Definition of “normal model” for each device in the MANET is captured
 - “Normal”, clean traffic is used to train multiple BFs.
 - The collection of BFs will define a “normalcy threshold”

@node 1: \[d_1 = \text{Dist}(m_{\text{in}_1}, m_{\text{out}_2}) \]
\[d_2 = \text{Dist}(m_{\text{in}_1}, m_{\text{out}_3}) \]
\[d_3 = \text{Dist}(m_{\text{in}_1}, m_{\text{out}_4}) \]
\[\text{th}_1 = \max (d_1, d_2, d_3) \]
Testing the system

- Membership acceptance and update testing:
 - Membership Acceptance and Update -- Devices are accepted to/expelled from the MANET when their models don’t differ much from the MANETs’ models.
 - Voting System – a distributed voting system among all members decides whether a certain model is similar enough or far too different from the normal model defined in the MANET.

@node i: \[\text{Dist}(m_{\text{in}_i}, m_{\text{out}_j}) < \text{Th}_i? \]
\[i=1,..i-1,i+1,..n \] ➔ vote?
TestBed: ORBIT

- Real MANET with real traffic from a MANET application (wireless P2P applications) – avoid network simulators or traffic simulators
- 400-node grid with Debian images located at Rutgers University
- Each node represents a device in a MANET. The nodes are connected via Ethernet or via AODV.
- MANET application: a number of x users will exchange emails among them.
- In order to make it realistic, the devices will exchange real email from the ENRON dataset (chat application was also considered but we don’t have big chat datasets)
- Once all devices are started, traffic is captured at
 - an SMTP level, to model content exchange
 - at an IP level (with AODV routing, not Ethernet), to model routing information, RREQ, RREP packets, frequency of requests
- Content and Routing is modeled as BloomFilters, and compared versus learnt normal models
BARTER: Profile Model Exchange for Behavior-based Access Control for MANETs

IBM Security and Privacy Day, Nov ’06
Thank You!!

Vanessa Frias-Martinez
Prof. Salvatore J. Stolfo
Columbia University